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ABSTRACT 

Both linear and area gas proportional counter position-sensitive detectors (PSDs) are used 
at IPNS, and both charge-division and rise-time encoding schemes are used for these detectors. 
Impedance mismatching at the detector ends can lead to nonlinearities in the analog portion of 
the encoding circuits, and digitization errors can lead to local channel-to-channel variations in 
the position encoding. Some of these nonlineruities can be eliminated by appropriate circuit 
design, and a calibration scheme has been devised to effectively eliminate the remaining 
problems. Both the circuit improvements and the calibration methods am discussed 

I. Introduction 

Encoding Methods 

Figure 1 provides a schematic representation of a one-dimensional position-sensitive 
detector and preamplifiers. Typical voltage pulses from the preamplifiers are also shown for a 
neutron detected at a particular position x. In “charge-division encoding” the remainder of the 
encoding circuitry is designed to determine the peak amplitudes V, and V, from the two ends of 
the detector, and to determine an “encoded position” x’ for this event from the relationship 

v* (4 
x’= v*(x)+Fgx) LD +xo (1) 

where L, = xa - xA is the detector length, xA and xa are the positions of the detector ends, and x, 
is a constant which allows adjustment of the encoding offset. Figure 1 also shows the rise times 
t*(x) and t&x) of the pulses at the two ends of the detector resulting from an event at position x. 
In “rise-time encoding” the rest of the encoding circuitry determines these “rise times”, and the 
encoded position x’ for this event is based on the relationship 

L x’=D l_ 

[ 

ta(x>-t*(x) 

2 tB(x*)-t,(x,> +xo 1 
(2) 

The normalizing constant ta(x,) - t,(x,), which must be determined empirically, is roughly 
equal to the “detector time constant” RC, where R and C are the total resistance and capacitance 
associated with the detector electrode. 

* Work supported by U.S. Department of Energy, BES, contract No. W-31-109-ENG-38. 
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Figure 1. Schematic representation of the charge-division and rise-time encoding schemes. 

The linearity of the encoding for position-sensitive detectors can be readily assessed by a 
“flood pattern” measurement to determine the response of the detector to a uniform flux of 
neutrons. If Ni is the number of counts measured in the encoded segment i when a detector with 
detection efficiency E is under uniform illumination I,,, then 

Ni =I,E(Xi+l -Xi) (3) 

where Xi and ~,+t are the physical positions corresponding to the boundaries of the i* segment 
and statistical fluctuations have been ignored. Assuming E is constant, the variation of Ni from 
segment to segment gives a direct measure of the variation in the ranges of physical detector 
positions which are mapped into the segments by the encoding process, and hence a direct 
measure of the differential nonlinearity of the detector encoding. 

II. Impedance Mismatching Problems and Solutions 

Significant effort has been invested in understanding the position encoding for the PSDs on 
the GLAD (charge-division encoding) and SAD (rise-time encoding) instruments at IPNS. 
Figure 2 shows a typical flood pattern measured with one of the GLAD one-dimensional PSDs 
at an early stage in the development of the charge-division encoding electronics. The large 
nonlinearities seen near the detector ends affect roughly 20% of the total detector length. In an 
effort to understand these nonlinearities, the detector was modeled as a uniformly distributed 
resistance-capacitance (RC) line, and a computer program was used to numerically invert the 
Laplace transforms for the system comprised of this RC line and its associated analog encoding 
electronics (charge-sensitive preamplifiers and shaping amplifiers).’ The calculated pulses at the 
end of the detector close to the event are large, and show the usual rapid rise to a peak value 
proportional to the charge collected on the capacitor at that end, followed by a slow decay 
through the associated discharging resistor. However, for x near either end of the detector, the 
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Figure 2. Flood pattern measured with an unterminated GLAD linear PSD. 

pulses at the opposite end of the detector are very small, and are distorted from this expected 
behavior. These small pulses show the rapid rise proportional to the initial charge collected on 
the capacitor at this end, but this is followed by a substantial additional slow rise due to the 
discharge of the capacitor at the far end of the detector. While most of that charge is dissipated 
through the associated resistor, some of it is transferred back through the detector and appears on 
the capacitor at this end. (This can also be thought of as a “reflection” of part of the initial 
waveform from the impedance mismatch between the detector and the preamplifier.) The curve 
labeled “not terminated” in Figure 3 demonstrates this type of behavior. Since the remainder of 
the electronic circuitry senses the peak of the voltage pulse rather than just the initial rapidly- 
rising portion, this “double counting” of some of the charge causes the encoded voltage at the 
end away from the event to be higher than it would be based on the initial charge division alone. 
This effect disappears rapidly as the event position is moved away from the detector end; 
analytical expressions have been derived which quantitatively explain this behavior.1 

Figure 3. Calculated pulse shape at end B of a GLAD detector for an event at x:=O.O5L, in 
the unterminated and terminated cases. 
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EbitionChannel 

Figure 4. Flood pattern measured for a GLAD detector after the termination was added. 

These calculations made clear a number of changes to the encoding circuitry which would 
partially or entirely alleviate the problem. These included using preamplifiers with much higher 
open-loop gain, using very fast pulse shaping electronics to filter out the slow-rising component, 
and simply adding small terminating resistors to the ends of the detector. In this latter 
procedure, which was adopted for the GLAD detectors, these resistors appear to the circuit as 
neutronically-inactive extensions of the detector. Then since the active regions of the “modified 
detector” are all farther away from the effective electronic ends of the modified detector, all the 
active regions fall within the portion where the encoding is linear. The curve labeled 
“terminated” in Figure 3 shows the calculated voltage pulse under these conditions, and indicates 
that while there is still some distortion of the pulse at the end away from the event, this 
distortion affects only the long-time portion of the pulse shape and does not affect the peak 
value. Figure 4 shows the almost completely linear flood pattern measured for a GLAD detector 
which has had such resistors added. 

Figure 5. Calculated flood patterns for rise-time encoding with different pulse shaping 
times and different types of termination. Because of symmetry, only half of the detector is 
shown. L,=l in this example. 
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Impedance-matching also plays an important role in the linearity of rise&me encoding, but 
the mechanism is much more complicated than in the case of charge-division encoding. Figure 5 
shows one-dimensional flood patterns calculated for a rise-time encoded PSD, using pulse- 
shaping time-constants of 100 ns and 1000 ns for the analog portion of the of encoding 
electronics. System parameters for the calculations were chosen to match those of the 20 x 20 
cm2 two-dimensional rise-time-encoded PSD used on SAD. The figure shows considerable 
nonlinearity, with better linearity when longer time constants are used. This behavior is also 
seen in flood patterns measured on the SAD detector, and is consistent with the empirically- 
determined linearity rules of Borkowski and Kop~.~ However, the calculations also indicate that 
with properly chosen resistance-capacitance termination networks at the ends of the detector 
electrodes, the detector encoding can be made essentially linear while using much shorter pulse- 
shaping time constants. Calculations for such a “terminated” configuration with a shaping time 
constant of 100 ns are also shown in the figure, where it can be seen that in this “terminated” 
case the linearity is nearly as good with the shorter time constant as it was with the much longer 
time constant in the “not terminated” case. Since the shorter time constants permit operation at 
higher data rates, such termination networks may be a useful addition to the detector electronics. 

IV. Digitization Problems 

Close inspection of Figs. 2 or 4 shows significant segment-to-segment variations in the 
encoded flood patterns for the GLAD detectors. These variations are systematic, and far exceed 
the expected statistical fluctuations. These are a result of the nonlinearities in the charge- 
division-encoding digitization circuitry, and are generally different for every different set of 
digitization electronics, and hence for every detector. It has not been possible to eliminate such 
variations without resorting to much more expensive circuitry. However, the calibration 
procedures discussed below can correct for these variations as well as for the segment-to- 
segment variations sometimes associated with the digitization process for rise-time encoding. 

V. Calibration Methods and Correction Algorithms 

We have developed a procedure, valid for both charge-division and rise-time encoded data, 
for correcting for any remaining nonlinearities in the encoded data.3 Consider a one- 
dimensional PSD which has been binned into n spatial segments. In the analog portion of the 
encoding process, an event occurring at position x will be encoded to have occurred at x’ with a 
probability given by the resolution function P(x,x’). If the incident intensity per unit length is 
I,(x) and the detection efficiency is E, then the measured intensity will be 1(x’) given by 

I(x’)= E J IJx)P(x,x’)dx 
-00 

The number of counts Ni recorded for segment i is just 

(4) 



Ni = r’I(x’)dx’ (5) 
X1 

If we assume that the resolution function is gaussian with standard deviation G and that the 
illumination intensity has the uniform value I, over the length of the detector, then this becomes 

In the case of infinitely sharp resolution (cs = 0), Eq. (6) reduces to 

I 
0 for Xi < Xi+l < X* 

loE(Xi+l - ‘A ) for Xi < X* < Xi+l 

Ni = I,E(Xi+~ - Xi) for x* < xi c xi+1 < x* 

10&CXB -‘i) for Xi < Xg < Xi+l 

0 for xg < xi < xi+1 

(7) 

If the encoded positions are accurately known for two physical positions, say x, and xP which 
are a distance L apart, then 

1 
xi =x 

1,~ xBNi =--. 
L xi=xI. 

(8) 

where some interpolation may be required to handle the end segments in the sum. If one of 
these known positions is then used to find one of the Xi (by interpolation to the end of the 
corresponding segment), then Eq. (7) can be used to find all of the other 3 in terms of the Ni 
from the flood pattern. If all of the intensity from the ends of the detector is recorded in the 
flood pattern data, then xA and xB can be determined from the conservation of intensity, as 

x, = x, ’ N -- c 18 xcx. i 

(9) 

1 
XB =X,+- Ni c 

I,& xx= 
(10) 

If the resolution o(x) is not infinitely small, but can be assumed to vary only slowly with x 
(the usual case), then it can be replaced with 0(x’) in the integral in Eq. (6). In regions of the 
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detector. which are several (r from the ends, the limits of integration xx to x3 in Ec,. (611 can be 

replaced with - 00 to foe, and the integral over x can be evaluated to give 

Ni = I,& 1 dx’ = I,E(x~+~ -xi) 
XL 

for xA << x << xg (11) 

which is independent of the value of cs and is equivalent to Eq. (7). Thus resolution effects can 
be ignored for the central portion of the flood pattern, and the procedure outlined above with 
Eqs. (7) and (8) can still be used for calibration of the central portion of the detector. 

Near the ends xA and xa of the detector, the resolution must be taken explicitly into account 

in Eq. (6). For segments near end A, xa can be replaced by +oo as the limit of integration, giving 

=$(Xi+l -X,) + L$‘r _i( x>oA)&/ 
=1 

(12) 

This equation can be solved for 3 if Xi+l is known, so it is only necessary to start at a point 
where Xi+l is known from Eq. (7) and then solve Eq. (12) repetitively for successively smaller 
values of i. A similar procedure can be used for calibration near end B. Equations (9) and (10) 
can still be used to determine xA and xa in this case. 

For most area detectors, the encoding of the x and y positions is done independently, so the 
calibration procedure involves such a one-dimensional calibration in each dimension. Figure 6 
shows a uniform-illumination flood pattern for the SAD area detector. Separate measurements 
made with a mask in front of the detector were least-squares fit to determine the local values of 

G(X) and o(y), and the encoded x’ and y’ values for the known x and y coordinates of the center 

of each hole in the mask. These values were used for x, and xa (and also for ya and ya), and the 
above procedure was applied to the data of Fig. 6 (averaged over the central portion of the 
detector) to determine the set of (Xi} and { yj}. Once these boundaries of each encoded segment 
of the detector were known, the data from the original pattern could be corrected to determine 
the “true” resolution-broadened efficiency-weighted intensity pattern I(x,y)& according to 

Ii,j (xYY)E = Nij 
( 

(13) 
‘i+l -‘iJ(Yj+i -Yj) 

Figure 7 shows the data of Fig. 6 corrected to produce I(x,y) in this manner. This procedure has 
proven to be quite satisfactory, and is now used for much of the data collected on SAD. 
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Figure 6. Measured flood pattern for the rise-time encoded detector used on SAD. 

Figure 7. Flood pattern of Fig. 6 corrected for detector nonlinearities by the method 
discussed in the text. 
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